MATEMATICA CONJUNTOS OPERACIONES: REUNIÓN, INTERSECCIÓN, DIFERENCIA Y COMPLEMENTO DIAGRAMA DE VENN

Blog de operaciones y problemas con conjuntos: https://bit.ly/2Zx0MYR
Vídeos de operaciones y problemas con conjuntos: https://bit.ly/2HXVpgX

Blog de matemática, teoría, ejemplos y ejercicios: https://bit.ly/2M7lLOM
Matemática, teoría, ejemplos y ejercicios en YouTube: https://goo.gl/Kc6vkQ

Vídeos de operaciones con conjuntos
1) Reunión de conjuntos: https://youtu.be/OyS68GoyDeE
2) Intersección de conjuntos: https://youtu.be/om487-DTlNw
3) Diferencia de conjuntos: https://youtu.be/bUMOczxlUd8
4) Complemento de conjuntos: https://youtu.be/K5gO0LKa6IM
5) Diferencia simétrica de conjuntos: https://youtu.be/sl-L-1EghXs


OPERACIONES ENTRE CONJUNTOS EN EL DIAGRAMA DE VENN

A) REUNION DE CONJUNTOS (A È B ) - Vídeo
Está constituido por todos los elementos del conjunto A y por todos los elementos del conjunto  B.
È B = {ΠU / x Î A Ú x Î B}



Ejemplo:
            Dados los conjuntos   A = {2, 3, 4, 5, 6, 7, 8} y B = {5, 7, 8, 9, 10}. Calcula A È B.
            Solución:
            Significa agrupar o reunir los elementos de ambos conjuntos. Los elementos que se repiten o se encuentran en ambos conjuntos se escriben por única vez.

È B = {2, 3, 4, 5, 6, 7, 8, 9, 10}

B) INTERSECCIÓN DE CONJUNTOS ( A Ç B ) - Vídeo
Es el conjunto formado por todos los elementos  comunes a los conjuntos A y B.
          A Ç B = {ΠU / x Î A Ù x Î B}


Ejemplo:
            Sean los conjuntos  A = {2, 3, 4, 5, 6, 7, 8} y B = {5, 7, 8, 9, 10}. Calcula A Ç B
            Solución:
     Es el conjunto formado por los elementos que pertenecen a ambos conjuntos, es decir, a los conjuntos A y B de nuestro ejemplo.
            A Ç B = { 5, 7, 8}

C) DIFERENCIA DE CONJUNTOS (A – B) - Vídeo
Está constituido por todos los elementos del conjunto A que no pertenecen al conjunto B. Es decir sólo los elementos del primer conjunto, en este caso, sólo los elementos del conjunto A.
         A - B = {ΠU / x Î A Ù x Ï B}
Ejemplo:
            Dados los conjuntos A = {2, 5, 6, 7, 8, 9} y B = {3, 5, 7, 9}. Calcula A – B.
            Solución:
            Es decir, sólo los elementos que pertenecen al conjunto A. Los elementos del conjunto A que también son elementos del conjunto B no se consideran.
A – B = {2, 6, 8}




D) COMPLEMENTO DE UN CONJUNTO ( A ¢ ) - Vídeo
Es el conjunto formado por todos los elementos de U menos los elementos del conjunto A.
Dicho de otra forma, el complemento del conjunto A está formado por los elementos que le faltan al conjunto A para ser igual al conjunto universal.
          A ¢ = {ΠU / x Ï A} ó A ¢= U - A
Ejemplo:
            Dados los conjuntos U = {3, 4, 5, 6, 7, 8, 9}  y  B = {4, 5, 6}. Calcula  M ¢
            Solución:
            Los elementos que le faltan al conjunto M para ser igual al conjunto universal son:
            3, 7, 8 y 9.  M ¢ = {3, 7, 8, 9}.


E) DIFERENCIA SIMÉTRICA (A D B) - Vídeo
Es la reunión de los elementos que pertenecen exclusivamente a uno solo de los conjuntos A y  B.
D B = {ΠU / (x Î A Ù x Ï B) Ú (x Î B Ù x Ï A)}
D B = (A – B) È (B – A)

Ejemplo:
Dados los conjuntos  A = {1, 2, 3, 4, 5, 6, 7} y B = {1, 2, 7, 8, 9}. Calcula A D B.
Solución:
D B = {3, 4, 5, 6, 8, 9}. Es decir, el conjunto A menos B reunión el conjunto B menos A.
ACTIVIDAD DE APRENDIZAJE
Dados los conjuntos:
A = {1, 2, 3, 5, 6, 7} ; B = {-1, 0, 2, 7, 8, 9} y C = {-2, -1, 0, 1, 2, 3, 5}
Calcula:
a) A È B         b) B Ç C         c) A – (B È C)            d) B ¢ Ç (A D C)

OPERACIONES CON INTERVALOS REUNION, INTERSECCIÓN, DIFERENCIA Y COMPLEMENTO

Blog de operaciones con intervalos: https://goo.gl/mv6zmi
Vídeos de intervalos en YouTube: https://goo.gl/FDrhD9
Blog de matemática y operaciones con intervalos: https://goo.gl/YNM7Ua

Vídeos de intervalos:
Abiertos, cerrados, semiabiertos, semirrectas: https://youtu.be/sx5UaWR5exA

Reunión, intersección, diferencia y complemento: https://youtu.be/bbqTS3KQka0

Abiertos cerrados, semirrectas y operaciones con intervalos: https://youtu.be/SiwC4WFewxg

Contenido del vídeo:
Intervalos, definición, abiertos y cerrados.
Semirrectas o rayos.
Operaciones con intervalos: reunión, intersección, diferencia y complemento.

Operaciones combinadas con intervalos.

INTERVALOS:
Un intervalo es un subconjunto infinito de la recta numérica real, y contiene a todos los números reales que están comprendidos entre dos extremos.
CLASES DE INTERVALOS:
A) Intervalo abierto: Intervalo abierto, es el conjunto de todos los números reales mayores que a y menores que b.


B) Intervalo cerrado: Intervalo cerrado, es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.



C) Intervalo semiabierto por la izquierda:
Intervalo semiabierto por la izquierda, es el conjunto de todos los  números reales mayores a y menores o iguales que b.

D) Intervalo semiabierto por la derecha:
Intervalo semiabierto por la derecha , es el conjunto de todos los  números reales mayores o iguales que a y menores que b.


SEMIRRECTAS O RAYOS:
Una semirrecta tiene un origen, es el punto de inicio, que puede ser abierto o cerrado, y se extiende hacia el - ¥ o + ¥.
A) > a: Es el conjunto de todos los números reales mayores que a y menores que el infinito. O simplemente, todos los números reales mayores que a.


B) ³ a: Es el conjunto de todos los números reales mayores o iguales que a y menores que el infinito. O simplemente, todos los números reales mayores o iguales que a.


C) < a: Es el conjunto de todos los números reales menores que a y mayores que el menos infinito. O simplemente, todos los números reales menores que a.


D) £ a: Es el conjunto de todos los números reales menores o iguales que a y mayores que el menos infinito. O simplemente, todos los números reales menores o iguales que a.



REUNIÓN:  A UB
Dados los conjuntos A y B, reunión es agrupar los elementos de ambos conjuntos, es decir, de A y de B.
Simbólicamente:       È B = {ΠR / x Î A Ú x Î B}
Ejemplo:

Ejemplo:

INTERSECCIÓN: Ç B
Dados los conjuntos A y B, la intersección son los elementos comunes a ambos conjuntos.
Simbólicamente:     Ç B = {ΠR / x Î A Ù x Î B}
Ejemplo:

Ejemplo:

REUNIÓN E INTERSECCIÓN DE INTERVALOS:
Ejemplo:

Ejemplo:

DIFERENCIA: A – B
Dados los conjuntos A y B, la diferencia, son sólo los elementos del conjunto A.
Simbólicamente:     A - B = {ΠR / x Î A Ù x Ï B}
Ejemplo:

Ejemplo:

COMPLEMENTO:  A ’
Dado el conjunto A, su complemento es el conjunto universal menos A.
Simbólicamente:     ¢ = {ΠR / x Ï A} ó A ¢= U - A
Ejemplo:

OPERACIONES COMBINADAS CON INTERVALOS:
Ejemplo:

Ejemplo:
             

INTERVALOS ABIERTOS CERRADOS SEMIABIERTOS SEMIRRECTA O RAYOS

Blog de operaciones con intervalos: https://goo.gl/mv6zmi
Vídeos de intervalos en YouTube: https://goo.gl/FDrhD9
Blog de matemática y operaciones con intervalos: https://goo.gl/YNM7Ua

Vídeos de intervalos:
Abiertos, cerrados, semiabiertos, semirrectas: https://youtu.be/sx5UaWR5exA

Reunión, intersección, diferencia y complemento: https://youtu.be/bbqTS3KQka0

Abiertos cerrados, semirrectas y operaciones con intervalos: https://youtu.be/SiwC4WFewxg

Contenido del vídeo:
Intervalos, definición, abiertos y cerrados.
Semirrectas o rayos.
Operaciones con intervalos: reunión, intersección, diferencia y complemento.

Operaciones combinadas con intervalos.

INTERVALOS:
Un intervalo es un subconjunto infinito de la recta numérica real, y contiene a todos los números reales que están comprendidos entre dos extremos.
CLASES DE INTERVALOS:
A) Intervalo abierto: Intervalo abierto, es el conjunto de todos los números reales mayores que a y menores que b.


B) Intervalo cerrado: Intervalo cerrado, es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.



C) Intervalo semiabierto por la izquierda:
Intervalo semiabierto por la izquierda, es el conjunto de todos los  números reales mayores a y menores o iguales que b.

D) Intervalo semiabierto por la derecha:
Intervalo semiabierto por la derecha , es el conjunto de todos los  números reales mayores o iguales que a y menores que b.


SEMIRRECTAS O RAYOS:
Una semirrecta tiene un origen, es el punto de inicio, que puede ser abierto o cerrado, y se extiende hacia el - ¥ o + ¥.
A) > a: Es el conjunto de todos los números reales mayores que a y menores que el infinito. O simplemente, todos los números reales mayores que a.


B) ³ a: Es el conjunto de todos los números reales mayores o iguales que a y menores que el infinito. O simplemente, todos los números reales mayores o iguales que a.


C) < a: Es el conjunto de todos los números reales menores que a y mayores que el menos infinito. O simplemente, todos los números reales menores que a.


D) £ a: Es el conjunto de todos los números reales menores o iguales que a y mayores que el menos infinito. O simplemente, todos los números reales menores o iguales que a.



REUNIÓN:  A UB
Dados los conjuntos A y B, reunión es agrupar los elementos de ambos conjuntos, es decir, de A y de B.
Simbólicamente:       È B = {ΠR / x Î A Ú x Î B}
Ejemplo:

Ejemplo:

INTERSECCIÓN: Ç B
Dados los conjuntos A y B, la intersección son los elementos comunes a ambos conjuntos.
Simbólicamente:     Ç B = {ΠR / x Î A Ù x Î B}
Ejemplo:

Ejemplo:

REUNIÓN E INTERSECCIÓN DE INTERVALOS:
Ejemplo:

Ejemplo:

DIFERENCIA: A – B
Dados los conjuntos A y B, la diferencia, son sólo los elementos del conjunto A.
Simbólicamente:     A - B = {ΠR / x Î A Ù x Ï B}
Ejemplo:

Ejemplo:

COMPLEMENTO:  A ’
Dado el conjunto A, su complemento es el conjunto universal menos A.
Simbólicamente:     ¢ = {ΠR / x Ï A} ó A ¢= U - A
Ejemplo:

OPERACIONES COMBINADAS CON INTERVALOS:
Ejemplo:

Ejemplo: